330 research outputs found

    DFTCalc: reliability centered maintenance via fault tree analysis (tool paper)

    Get PDF
    Reliability, availability, maintenance and safety (RAMS) analysis is essential in the evaluation of safety critical systems like nuclear power plants and the railway infrastructure. A widely used methodology within RAMS analysis are fault trees, representing failure propagations throughout a system. We present DFTCalc, a tool-set to conduct quantitative analysis on dynamic fault trees including the effect of a maintenance strategy on the system dependability

    One Net Fits All: A unifying semantics of Dynamic Fault Trees using GSPNs

    Get PDF
    Dynamic Fault Trees (DFTs) are a prominent model in reliability engineering. They are strictly more expressive than static fault trees, but this comes at a price: their interpretation is non-trivial and leaves quite some freedom. This paper presents a GSPN semantics for DFTs. This semantics is rather simple and compositional. The key feature is that this GSPN semantics unifies all existing DFT semantics from the literature. All semantic variants can be obtained by choosing appropriate priorities and treatment of non-determinism.Comment: Accepted at Petri Nets 201

    Landscape response to late Pleistocene climate change in NW Argentina: Sediment flux modulated by basin geometry and connectivity

    Get PDF
    Citation: Schildgen, T. F., Robinson, R. A. J., Savi, S., Phillips, W. M., Spencer, J. Q. G., Bookhagen, B., . . . Strecker, M. R. (2016). Landscape response to late Pleistocene climate change in NW Argentina: Sediment flux modulated by basin geometry and connectivity. Journal of Geophysical Research-Earth Surface, 121(2), 392-414. doi:10.1002/2015jf003607Fluvial fill terraces preserve sedimentary archives of landscape responses to climate change, typically over millennial timescales. In the Humahuaca Basin of NW Argentina (Eastern Cordillera, southern Central Andes), our 29 new optically stimulated luminescence ages of late Pleistocene fill terrace sediments demonstrate that the timing of past river aggradation occurred over different intervals on the western and eastern sides of the valley, despite their similar bedrock lithology, mean slopes, and precipitation. In the west, aggradation coincided with periods of increasing precipitation, while in the east, aggradation coincided with decreasing precipitation or more variable conditions. Erosion rates and grain size dependencies in our cosmogenic Be-10 analyses of modern and fill terrace sediments reveal an increased importance of landsliding compared to today on the west side during aggradation, but of similar importance during aggradation on the east side. Differences in the timing of aggradation and the Be-10 data likely result from differences in valley geometry, which causes sediment to be temporarily stored in perched basins on the east side. It appears as if periods of increasing precipitation triggered landslides throughout the region, which induced aggradation in the west, but blockage of the narrow bedrock gorges downstream from the perched basins in the east. As such, basin geometry and fluvial connectivity appear to strongly influence the timing of sediment movement through the system. For larger basins that integrate subbasins with differing geometries or degrees of connectivity (like Humahuaca), sedimentary responses to climate forcing are likely attenuated

    Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7 TeV is presented. The data were collected at the LHC, with the CMS detector, and correspond to an integrated luminosity of 4.6 inverse femtobarns. No significant excess is observed above the background expectation, and upper limits are set on the Higgs boson production cross section. The presence of the standard model Higgs boson with a mass in the 270-440 GeV range is excluded at 95% confidence level.Comment: Submitted to JHE

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Performance and Operation of the CMS Electromagnetic Calorimeter

    Get PDF
    The operation and general performance of the CMS electromagnetic calorimeter using cosmic-ray muons are described. These muons were recorded after the closure of the CMS detector in late 2008. The calorimeter is made of lead tungstate crystals and the overall status of the 75848 channels corresponding to the barrel and endcap detectors is reported. The stability of crucial operational parameters, such as high voltage, temperature and electronic noise, is summarised and the performance of the light monitoring system is presented

    Calibration of the CMS Drift Tube Chambers and Measurement of the Drift Velocity with Cosmic Rays

    Get PDF
    Peer reviewe

    CMS Data Processing Workflows during an Extended Cosmic Ray Run

    Get PDF
    Peer reviewe

    Aligning the CMS Muon Chambers with the Muon Alignment System during an Extended Cosmic Ray Run

    Get PDF
    Peer reviewe
    • …
    corecore